
1

GMTL Programmer's Guide
Generic Math Template Library

Allen Bierbaum,
Kevin Meinert,

Ben Scott,
$Date: 2002-07-15 19:52:31 $

Table of Contents
Introduction ... 1

Design .. 1
Implementation .. 1
Testing ... 2

The GMTL API ... 2
Supplied GMTL Math Types .. 2
Supplied GMTL Operations ... 2

References ... 5

Introduction
GMTL stands for (G)eneric (M)ath (T)emplate (L)ibrary. It is a math library designed to be high-
performance, extensible, and generic. The design is based upon discussion with many experts in the field
of computer graphics and virtual reality and is the culmination of many previous graphics math library
efforts. GMTL gives the graphics programmer several core math types and a rich library of graphics/
math operations on those types.

Design
The design of GMTL allows extensibility while mantaining a stable core. Core data types are separated
from operations to improve encapsulation [Meyars]. This allows anyone to write their own math
routines to extend or replace parts of the GMTL. This feature allows a very stable core set of math
primitives that seldom change due to extensions, maintainance, or programmer error.

All math primitives in GMTL use generic programming techniques [ModernC++] to give the
programmer many options to define their data. For example, matrices and vectors can be any dimension
and any type. GMTL suffers no loss of performance due to these generalities because the parameter
choices made are bound at compile time.

Implementation
GMTL is implemented using generic programming and template metaprogramming [ModernC+
+][GenerativeProgramming]. Generic programming allows selection by the user of size and type
information for all data types in GMTL. For example, the generic Matrix type allows a programmer
to select between any size (N x M) and any datatype (float, double, int...). The selection of these
parameters is done through template parameters. To ease the use of these parameters, the system
declares several typedefs that capture commonly used options.

GMTL Programmer's Guide

2

Requested data types are statically bound and optimized by the compiler. The operations supplied with
GMTL are implemented generically using a technique called template metaprogramming. Template
metaprogramming allows things such as loops to be unrolled and conditionals to be evaluated by the
compiler. Things such as loops and conditionals are evaluated statically, rather than at runtime. In
addition, advanced optimizations can be performed that do this such as eliminate temporary variables
and other intermediate computations. The result is compiled code that can behave as fast (or faster) then
using traditional hand-coding methods such as loop unrolling, etc..

Testing
GMTL has an integrated test suite included in the source code distribution. The suite tests GMTL for
correctness as well as performance degradation. The GMTL developers have put much time and effort
into the test suite because we think that it will ensure that the code stays stable when changes are made,
and that changes don't introduce performance hits. The bottom line is, if any behaviour changes in
GMTL we want to know about it before it bites us. As a result of this philosophy, any contributions to
GMTL also need to be well tested. Submissions will not be accepted without tests for correctness and
performance.

The GMTL API
The GMTL API has two aspects you should keep in mind. The data types, and the operations on the
data.

All data types and operations are defined in the gmtl namespace. Thus all types must be prefixed with
the gmtl:: scope or a using gmtl; command can be used to bring all of the GMTL functionality
into the local scope.

Supplied GMTL Math Types
GMTL comes with many math data types: Vec, Point, Matrix, Quat, Coord, Sphere. The only member
functions allowed within each class are:

• Constructor, Copy Constructor, and Destructor

• assignment operator - the compiler defines this automatically

• Set/Get member functions

• bracket (or paren) - operator for data element access.

• getData - function to retrieve a pointer to internal data.

• DataType - a typedef for the internal data format, useful for generic programming.

Additionally many of the types have predefined typedefs available for commonly used types. For
example instead of typing gmtl::Matrix<4, 4, float>, a user could instead use the gmtl::Matrix44f
typedef.

Filenames for each math type are always [PrimitiveType].h. For example, documentation on the
gmtl::Quat type is located in Quat.h.

Supplied GMTL Operations
In Table 1. Mathematical operations supplied with GMTL are arranged into files by the following
categories. we illustrate how the operations in GMTL are grouped and specified. Use this table for quick
reference. Using the information here, such as file and function names, you can then go to the GMTL

GMTL Programmer's Guide

3

programmer reference for specific information. Alternatively you can look in the specified header files
for documentation.

Table 1. Mathematical operations supplied with GMTL are arranged into files by
the following categories.

Category File What you might find there Discussion

Mathematical
Operations

[PrimitiveType]Ops.h• type operator*(type, type)

• normalize(type)

• bool invert(type)

Implements fundamental
mathematical operations such as
+, -, *, invert, dot product.

Geometric
Transformations

Xform.h • void xform(result, a, b)

• type operator*(a, b)

Transforms a * b, stores into
result.

Creational
(Factory
Functions)

Generate.h • type makeTrans<type>(type)

• type makeRot<type>(rad, x,
y, z)

• type makeRot<type>(x, y, z,
rotation_order)

A "make" function should be
thought of as a constructor. Any
time a temporary is needed, use a
"make" function. Make functions
are creational in nature, and most
takes data as input to "seed" that
creation. The result can be a clone
or a conversion from the input
data.

The "make" functions all create
a temporary object and return
it "out the back". The "make"
functions are convenient in certain
cases.

For example to construct a
translation matrix on one
line of code: Matrix44f
mat(makeTrans<Matrix44f>(1,
2, 3)); See [Patterns] for
discussion on Factory.

NOTE: Since the functions
are inlined, a smart compiler
should be able to optimize out the
temporary making these perform
fast. Beware, when using a dumb
compiler (or debug mode), these
functions will be slower (because
of the temporary) than the get/set
functions.

Setters (and
Getters)

Generate.h • getRot(type, result_rad,
result_x, result_y, result_z)

• setTrans(type, result_vec)

• getScale(type, result_scale)

Setter functions all take some
input, and write to some output. A
"Getter" is simply a Setter except
backward, and is why we refer to
them all as "Setters".

GMTL Programmer's Guide

4

Category File What you might find there Discussion

A Setter extracts information
from const data, and writes
information to the non-const
data. Sometimes like in the case
of x,y,z a group of inputs is
considered one input.

A Setter never returns a
temporary "out the back", and
because of this is usually more
efficient than their "make"
Creational counterpart.

Following object oriented style,
the first parameter is always the
object being set (for set's) or read
(for get's).

Conversions Convert.h convert(src, dest) Convert one type to another. For
example, convert Matrix to Quat,
Quat to Matrix, and others...

Convert functions are purely
functional in nature since they
do not particularly "belong" to
either class. The first parameter
is always the source (read-only),
and the second is the destination
of the converstion (writable).

Comparisons [PrimitiveType]Ops.h• bool operator==(type, type)

• bool operator!=(type, type)

• bool isEqual(type, type, tol)

Compare similar types. Compare
functions always take two objects,
and return a boolean. The special
isEqual, takes a third parameter to
specify a tolerance. Each of these
three functions are defined for
every type in GMTL.

OStream
Outputs
(operator<<)

Output.h • std::ostream&
operator<<(std::ostream&,
type)

There is one operator<< defined
for each Math type in GMTL.

C Math
Abstraction

Math.h • type Math::sin(type)

• type Math::aTan2(type)

• type Math::isEqual(type)

Anything you would find in the
C math library (such as sinf, sin,
cosf, cos, fabsf, or fabs, etc...)
is templated here using only
one name each. For example,
instead of using ::sin() for
64bit float and ::sinf() for 32bit
float, you can use the templated
gmtl::Math::sin() function with
allows the compiler to autodetect
the datatype passed to it and
select sinf or sin appropriately.

GMTL Programmer's Guide

5

Category File What you might find there Discussion

NOTE: All items in the GMTL
C Math abstraction are in the
"gmtl::Math::" namespace.

Collision
Detection

Intersection.h • bool intersect(a, b) Test whether a intersects b.

Bounding
Volumes

Containment.h • [] Builders of bounding volumes
around geometric types such as
Point, Sphere.

Template
Metaprogramming
Utilities

Meta.h • class Type2Type Template metaprogramming
utilities for use in optimization
of generic programming used
throughout GMTL.

References
[Patterns] Erich Gamma. Richard Helm. Ralph Johnson. John Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison Wesley . 1995. Copyright © 1995 Addison Wesley Longman, Inc.

[ModernC++] Andrei Alexandrescu. Modern C++ Design. Generic Programming and Design Patterns Applied.
Addison Wesley . 2001. Copyright © 2001 Addison Wesley.

[GenerativeProgramming] Ulrich Eisenecker. Krzysztof Czarnecki. Generative Programming. Methods, Tools, and
Applications. Addison Wesley Pub. Co.. 2000. Copyright © 2000 Addison Wesley.

[Meyars] Scott Meyars. “C++ Users Journal”. How Non-Member Functions Improve Encapsulation. CMP. February
2000.

	GMTL Programmer's Guide
	Table of Contents
	Introduction
	Design
	Implementation
	Testing

	The GMTL API
	Supplied GMTL Math Types
	Supplied GMTL Operations

	References

